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Abstract

Further results concerning arbitrary-order approximations to grid functionals via linear combinations of basis opera-
tors obtained by fixing sets of free parameters (multioperators) are presented. A parallel algorithm for their calculations is
described. As basis operators, a version of one-parametric families of the fifth-order compact upwind differencing opera-
tors (CUD) as well as the fourth-order non-centered approximations to first derivatives are considered. The resulting con-
servative schemes for fluid dynamics type of equations (or other equations with convection terms) are outlined. The
existence and uniqueness of the corresponding multioperators are discussed. It is shown that for properly chosen param-
eters, multioperators preserve the upwind (downwind) properties of the basis operators, that is their positivity (negativity)
in appropriate Hilbert spaces of grid functions. As examples, the seventh- and ninth-order multioperators-based schemes
with very good dispersion and dissipation properties are described, their possible optimization being discussed. Numerical
examples illustrating their extremely high accuracy are presented.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The concept of multioperators was introduced by the author in [1]. It was aimed at constructing prescribed-
order approximations (formally, arbitrary-order ones) to various grid functionals by exploiting linear combi-
nations of basis operators having relatively simple structures and depending on at least one free parameter. It
is an alternative to the commonly used ways of increasing of approximation orders by adding complexities
to approximating expressions (in particular, by increasing numbers of grid points in operators supports
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(stencils)). In the case of parallel machines, execution times for multioperators-based methods of very high
accuracy can be approximately the same as those for relatively low-order basis operators so the multioperators
principle seems to be quite attractive when high-order schemes are needed.

For completeness, we reproduce here the formulation of the main idea. Suppose that there is a family of
operators LhðsÞ depending on, at least, one parameter s and approximating a linear operator L on a uniform
grid xh ¼ ðxj ¼ jh; j ¼ 0;�1;�2; . . .Þ with a mesh size h. Suppose further that for sufficiently smooth functions
f from some space U one has the following Taylor expansion series at grid points x ¼ xj ¼ jh; j ¼ 0;�1;�2; . . .
½Lf �j ¼ LhðsiÞ½f �j þ
XmþM�2

k¼m

akjckðsiÞhk þOðhmþM�1Þ; ð1Þ
where high-order derivatives are included in the coefficients akj and ½�� : U ! UhðxhÞ is a projection operator
into a space Uh of grid functions defined on xh. Assume also that for M fixed distinct values of s

(s ¼ si; i ¼ 1; 2; . . . ;M), one has
det A 6¼ 0; ð2Þ

where A ¼ fbijg; b1j ¼ 1; bij ¼ cmþi�2ðsjÞ i ¼ 2; 3; . . . ;M ; j ¼ 1; 2; . . . ;M . Then it is possible to find a partition
of unity ci, i = 1,2, . . .,M such that Eq. (1) upon the multiplication by ci followed by the summation over i

reduces to
½Lf �j ¼
XM

i¼1

ciLhðsiÞ½f �j þOðhmþM�1Þ:
The required ci coefficients are the solution of the linear system with matrix A and the right-hand side vector
having only the first non-zero component equal to unity. The above equality means that LM ¼

PM
i¼1ciLhðsiÞ

labelled as multioperator is a ðmþM � 1Þth-order approximation to L for arbitrary M. The mth-order oper-
ators LhðsiÞ are viewed here as basis operators. The potential for being basis operators satisfying (2) is an inher-
ent feature of compact approximations having free parameters in their inverse operators. It is the case of the
one-parametric families of compact upwind differencing (CUD) operators from [2] (their examples can be
found also in [7]), the upwinding parameter s being viewed as the free parameter in (1). The third-order
CUD operator was considered in the initial paper [1].

In the subsequent works [3–6], the emphasis was placed on approximations to the first derivatives in con-
vection, convection–diffusion and fluid dynamics types of equations. As basis operators, third- and fifth-order
CUD operators from [2] were used. It was found that matrix A in (2) can be cast in the form of the product of
a non-degenerate triangular matrix and the transpose of the Vandermonde matrix whose rows are powers (or
inverse powers) of s1; s2; . . . ; sM . It guaranties existence and uniqueness of the considered multioperators.
Moreover, the ci coefficients of the multioperators can be obtained in analytical forms thus avoiding numerical
solution procedures. Though arbitrary-order multioperators can be constructed with arbitrary sets of distinct
free parameters values, a limitation on their choice comes from the stability criteria for the resulting schemes.
The sets were viewed as admissible if they allowed one to construct upwind biased multioperators schemes.
The above cited papers contain an analysis of the admissible values of the parameters in the case of the
third-order CUD basis operators and the corresponding fifth-order multioperators conservative schemes
(M = 3). In [6], the analysis was extended to the case of the fifth-order CUD basis operators described in
[7] and seventh-order schemes for conservation laws. Numerical examples concerning the Burgers, Euler
and Navier–Stokes equations showed their superior performance when solving both unsteady and steady-state
problems. The CUD operators with the upwinding parameter present natural one-parametric families for con-
structing multioperators approximating the first derivatives in fluid dynamics equations. Using upwind mul-
tioperators-based schemes allows one in many cases to obtain good quality spurious oscillations-free solutions
without introducing artificial dissipation. However, there exists a variety of problems which do not require
upwinding. Small Reynolds number flows may serve as an example. Moreover, the upwinding concept is
senseless in the case of discretization procedures for self-adjoint operators, say, for the second derivatives
in the Poisson equation appearing in the vorticity-stream function formulation for incompressible flows, in
the wave equation for acoustic problems, etc. Thus, it is natural to look for multioperators which are linear
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combinations of centered basis operators. It was shown in [8] that it is possible to create multioperators for
centered differencing formulas as well. In this case, it is sufficient to change in the well known Collatz [9]
or Numerov formulas for the first or second derivatives the numerical constants in the inverse operators by
the free parameter (thus reducing their order to 2) and then to fix its M values. Using the resulting M oper-
ators as the basis ones and proceeding in the above described manner, one can obtain extremely accurate
2Mth-order formulas. Moreover, it was shown in [8], that the left-hand side term of Eq. (1) need not be viewed
as a derivative at a grid point. Indeed, it can be other functionals, for example, such as midpoint values of a
functions, and integral over cells. The constructed approximations are applied in [8] to a finite-volume type of
schemes for convection-diffusion equations and the Poisson equation. In the recent paper [10], the ninth-order
multioperators with the CUD fifth-order basis operators from [7] were constructed. They were used for the
direct numerical simulation of generation and decay of 2D turbulence in the case of a shear layer instability
described by the incompressible Navier–Stokes equations. It was shown that the smallest scales up to the Rey-
nolds number Re = 400,000 were properly resolved due to good dispersion and dissipation properties of the
scheme.

In the present paper, further results concerning arbitrary-order approximations to convection terms are
presented. The basis operators this time are obtained by fixing parameters in the fifth-order CUD operator
from ([2]) which previously did not receive the attention it needs. Additionally, to illustrate the flexibility of
the multioperators principle, a fourth-order one-parametric family of compact approximations is created
by following the finite volume strategy. Both families are then used to construct a novel type of multioperators
for convection, convection–diffusion and fluid dynamics equations. In all cases, interior approximations are
considered only. The results of the recent paper [11] can be used to formulate multioperators boundary clo-
sures. It will be a part of the subject of the ongoing publication.

The rest of the paper consists of three sections with the description and analysis of the basis operators, the
corresponding multioperators and conclusions. As a particular realization of the theory, the seventh- and
ninth-order schemes with illustrating numerical examples are presented in Section 3. Additional details of
the previous results in the multioperators area can be found in Appendix A.
2. Basis operators

We consider first the version of the CUD operators families described in [2] and a family of fourth-order
compact approximations to first derivatives obtained using quadratures and non-centered compact interpola-
tion formulas. In both cases, the resulting parameter-depending operators can serve as basis operators for
novel types of multioperators.
2.1. One-parameter family of fifth-order differencing operators

The third- and fifth-order compact upwind differencing (CUD) operators from [2] approximating first
derivatives may be viewed as rational functions of three-point operators depending at least on one free param-
eter. They do not require grid functions values outside computational domains when applied to derivatives at
internal nodes. Following the notations of [2,7], they can be expressed in terms of the unity operator I and
three-point central differences D0, D2 defined by
D0 ¼ T 1 � T�1; D2 ¼ T 1 � 2I þ T�1; T�1vj ¼ vðjh� hÞ:
In the condensed forms, the rth-order CUD families (r ¼ 3; 5) look as
ou
ox

� �
j

¼ LðsÞuj þOðhrÞ; r ¼ 3; 5;

LðsÞ ¼ DðsÞ þ s
2

R�1
1 ðsÞQ1ðsÞD2

� �
=h or

LðsÞ ¼ R�1
2 ðDðsÞ þ Q2D2Þ=h;

ð3Þ



2336 A.I. Tolstykh / Journal of Computational Physics 225 (2007) 2333–2353
where DðsÞ ¼ 0:5ðD0 � sD2Þ, s is the upwinding parameter, h is a constant mesh size, Q1 ¼ I ;Q2 ¼ 0 for r = 3,
Qi ¼ eQiðI þ D2=12Þ�1

; i ¼ 1; 2 for r = 5 while three-diagonal operators Ri, eQi can be expressed in terms of D0

and D2.
Eq. (3) present two types of compact differencing formulas depending at least on one free parameter. They

may be considered as additive and multiplicative corrections, respectively, to the first-order upwind (down-
wind) differencing operator DðsÞ=h. In the previous publications [2,7] they were referred to as CUD-II-m
and CUD-m where m = 3,5 denotes their orders.

A version of the fifth-order operators from [2] was described in [7] where the expressions for R1 and eQ1 can
be found. Now we consider another version from [2] denoting it by L5ðsÞ. In this case, R1 and eQ1 are defined by
R1ðsÞ ¼ I þ 1

6s
D0 þ

1

5
D2; eQ1ðsÞ ¼ I þ 17

60
� 1

9s2

� �
D2:
To calculate the action of L5ðsÞ ¼ ðDðsÞ þ s
2
R�1

1 ðsÞQ1D2Þ=h on a grid function, say on uj; j ¼ 0; 1; . . . ;N , it is
sufficient to calculate first vj ¼ ðI þ D2=12Þ�1D2uj by inverting the tridiagonal matrix ðI þ D2=12Þ, then to cal-
culate wj ¼ R�1

1 ðeQ1vjÞ by inverting again tridiagonal matrix and finally to calculate DðsÞuj þ s
2
wj. As seen,

three-point operators only are involved in the calculations thus using only internal grid values and requiring
OðNÞ operations. It is supposed that boundary conditions are formulated to perform the inversions.

In some instances it is convenient to cast LðsÞuj in the conservative form
L5ðsÞuj ¼ ðqjþ1=2 � qj�1=2Þ=h; ð4Þ
where qjþ1=2; j ¼ 0; 1; . . . ;N � 1 can be calculated in the above described manner with changing D0uj and D2uj

by ðujþ1 þ ujÞ � ðuj þ uj�1Þ and ðujþ1 � ujÞ � ðuj � uj�1Þ, respectively. Thus,
qjþ1=2 ¼ GðsÞuj ¼
ujþ1 þ uj

2
� s

ujþ1 � uj

2
þ sR�1

1 ðsÞQ1ðsÞ
ujþ1 � uj

2
: ð5Þ
Thus, two different fluxes qþjþ1=2 and q�jþ1=2 can be calculated for s > 0 and s < 0, respectively. Obviously, Eq.
(4) solves the following reconstruction problem: given grid function uj, find numerical fluxes qjþ1=2 in such a
way that the divided difference ðqjþ1=2 � qj�1=2Þ=h is the fifth-order approximation to ½ou=ox�j. One can easily
verify by using the Taylor expansion series that the above algorithm for calculating GðsÞuj with known uj can
be used for the finite volume reconstruction, that is, given the cell averages
�uj ¼
1

h

Z xjþ1=2

xj�1=2

uðnÞdn;
find ujþ1=2 ¼ GðsÞ�uj ¼ ½u�jþ1=2 þOðh5Þ. Form Eq. (4) is typical for all members of the CUD families. It is
appropriate for constructing conservative schemes in the case of discontinuous solutions allowing to use flux
limiters in shock capturing calculations. Examples of the calculations are presented in [2]. As to the schemes
with the above fifth-order approximation with flux limiters, they were tested against the Riemann problem and
the supersonic flows described by the Euler equations in [12].

Another important property of the L5ðsÞ operator concerns with its ability to provide upwind biased
approximations. Mathematically, it can be formulated in two ways depending on the assumed spaces Uh of
grid functions.

Let Uh be the Hilbert space of grid functions uh ¼ ðuj; j ¼ 0;�1;�2; . . .Þ with summable squares. Introduc-
ing the inner product as ðuh; vhÞ ¼ h

P1
j¼�1ujvj and the norm kuhkUh

¼ ðuh; uhÞ1=2, it is easy to show that upon
presenting L5ðsÞ as sums of the skew-symmetric Lð1Þ5 and self-adjoint Lð0Þ5 parts L5 ¼ Lð1Þ5 þ Lð0Þ5

� �
, one can write
Lð1Þ5 ðsÞ ¼ Lð1Þ5 ð�sÞ; Lð0Þ5 ðsÞ ¼ �Lð0Þ5 ð�sÞ: ð6Þ
It was shown in [2] that L5 is a positive operator, that is ðL5uh; uhÞ > 0 (which means that

Lð0Þ5 uh; uh

� �
> 0Þ; uh 2 U h if s >

ffiffiffiffiffiffiffiffi
5=3

p
. In the similar way, it can be proved that ðL5uh; uhÞ < 0 if

0 < s < 3=2
ffiffiffi
2
p

. In terms of the conjugate operation, Eq. (6) can be written as LðsÞ� ¼ �Lð�sÞ.
Considering the corresponding Fourier space, the real part of the Fourier transform bL5ðsÞ of L5ðsÞ can be

shown to be a non-negative and non-positive function of the Fourier variable for s >
ffiffiffiffiffiffiffiffi
5=3

p
and
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0 < s < 3=2
ffiffiffi
2
p

, respectively. It satisfies RebL5ðsÞ ¼ �RebL5ð�sÞ, the imaginary part being invariant under the
transformation s! �s.

Suppose now that U h is the space of bounded grid functions uj; j ¼ 0;�1;�2; . . . supplied with the norm
kujk ¼ maxjjujj. Then it is easy to verify that L5 : Uh ! Uh has the eigenfunctions wn ¼ expðianÞ;
0 6 a 6 2p;wn 2 U h. The expressions for the real parts of its eigenvalues are those for the real parts of bL5

if one considers k ¼ a=h as the Fourier variable.
By adjusting the sign of s to the slopes of characteristics of convection equations (or directions of a blowing

wind), one can obtain semi-discretized schemes which are linearly stable if k � kUh
norm is used. The schemes

also satisfy the spectral stability criteria if one prefers to use the discrete C-norms and the spectral theory.
Thus, there exists the potential for constructing stable fully-discretized schemes when proper time stepping
procedures are introduced.

2.2. Fourth-order upwind and downwind operators

Following the integro-interpolation (finite volume type) principle [13], consider the simplest equality:
g ¼ of
ox

ð7Þ
and corresponding exact integral relation
Z jhþh=2

jh�h=2

g dx ¼ fjþ1=2 � fj�1=2: ð8Þ
To discretize the RHS of (8), we construct a midpoint interpolation formulas using compact approximations.
Considering three-point operators, the required one-parametric family can presented as the interpolation from
the left
f ðxjþ1=2Þ ¼ Slfj þOðh4Þ;

Sl ¼ I þ 16s� 1

8

� �
D0 þ

3

16
� 8s

� �
D2

� ��1

I þ 16s� 1

8

� �
D0 þ

3

16
� 8s

� �
D2

� � ð9Þ
and from the right
f ðxj�1=2Þ ¼ Srfj þOðh4Þ;

Sr ¼ I � 16s� 1

8

� �
D0 þ

3

16
� 8s

� �
D2

� ��1

I � 16sþ 1

8

� �
D0 þ

3

16
þ 8s

� �
D2

� �
:

ð10Þ
The RHS of (8) can be approximated as either ðI � T�1ÞSlfj or ðT 1 � IÞSrfj. Using the quadrature formula
Z jhþh=2

jh�h=2

g dx ¼ h I þ 1

24
D2

� �
gj þOðh5Þ
and Eqs. (9) and (10), one arrives at the fourth-order approximations to of =ox shown by the following Taylor
expansion series:
L4;l ¼ I þ 1

24
D2

� ��1

ðI � T�1ÞSl=h;

L4;l½f �j ¼
of
ox

� �
j

� 17

5760
þ s

� �
h4f ð5Þ þ 32s2 � 1

512

� �
h5f ð6Þ þOðh6Þ; ð11Þ

L4;r ¼ I þ 1

24
D2

� ��1

ðT 1 � IÞSr=h;

L4;r½f �j ¼
of
ox

� �
þ 17

5760
þ s

� �
h4f ð5Þ � 32s2 � 1

512

� �
h5f ð6Þ þOðh6Þ: ð12Þ
j
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To estimate the positivity (negativity) properties of the ‘‘left’’ and ‘‘right’’ operators E4;l and E4;r respectively, it

is worth noting first that their skew-symmetric and self-adjoint components Eð1Þ4;l ;E
ð1Þ
4;r and Eð0Þ4;l ;E

ð0Þ
4;r , respec-

tively, satisfy the equalities
Eð1Þ4;l ¼ Eð1Þ4;r ; Eð0Þ4;l ¼ �Eð0Þ4;r : ð13Þ
To prove them, it is sufficient to take into account the commuting property of the involved operators and to
cast the operators in the form A�1B or, equivalently, in the form ðA � AÞ�1ðA � BÞ. The inverse operator is a
self-adjoint positive one while the product A � B can be readily calculated using algebraic manipulations with
the linear functions in D0 and D2 and taking into account the easily provable relation D2

0 ¼ 4D2 þ D2
2. Upon

doing so, one can obtain the resulting skew-symmetric and self-adjoint components and verify that the above
equalities are true. Thus, if E4;l is positive then E4;r is negative and vice versa. It means that the operators can
be used as upwind or downwind approximations to convection terms. However, in contrast to the CUD oper-
ators, the switching from the upwind to downwind options occurs when changing the operators indexes rather
then when changing the sign of the parameter s. More information can be obtained by considering their Fou-
rier transforms Ê4;lðaÞ and bE4;rðaÞ or, equivalently, their eigenvalues. Considering, for example, the real part
RebE4;lðaÞ, one can find that
hRebE4;lðpÞ ¼
12� 1536s

5þ 640s
:

Thus, the real part is positive (negative) if jsj < 1=128 (jsj > 1=128). It agrees with the negativity (positivity) of
the third term in the RHS of Eq. (11).

As in the CUD case, the actions of L4;l and L4;r operators can be expressed in terms of numerical fluxes.
They look as
L4;lfj ¼ ðql
jþ1=2 � ql

j�1=2Þ=h; ql
jþ1=2 ¼ I þ 1

24
D2

� ��1

Slfj;

L4;rfj ¼ ðqr
jþ1=2 � qr

j�1=2Þ=h; qr
jþ1=2 ¼ I þ 1

24
D2

� ��1

Srfjþ1:
2.3. Related compact schemes

Using the pairs {L5ðsÞ; L5ð�sÞ},{L4;l; L4;r} operators for convection, convection–diffusion equations, hyper-
bolic and fluid dynamics systems allows one to construct robust stable schemes with positive operators (in the
frozen coefficients sense). Optionally, either finite difference or finite-volume type approximations can be con-
structed in non-linear cases. Below the former strategy will be always followed. One of the possible options
[2,7] looks as follows. Consider systems of conservation laws:
ou

ot
þ ofðuÞ

ox
¼ 0; ð14Þ
where u and f are p-components vectors.
Let L+ and L� be the operators from any pair {L5ðsÞ; L5ð�sÞ},{L4;l; L4;r} satisfying Lþ > 0 and L� < 0,

respectively. Then the semi-discretized scheme for Eq. (14) in the index-free form can be written as
ou

ot
þLu ¼ 0; Lu ¼ 1

2
LþðfðuÞ þ Cuð Þ þ L� fðuÞ � CuÞð Þ ¼ 0; ð15Þ
where C is a diagonal matrix with positive entries ðc1; c2; . . . ; cpÞ, ci > 0; i ¼ 1; 2; . . . ; p. Now the spatial discret-
ization of Eq. (14) can be presented as
Lu ¼ ð1=2ÞðLþ þ L�ÞfðuÞ þ ð1=2ÞCðLþ � L�Þu:

The sum and the difference of the operators can be readily recognized as the skew-symmetric and the self adjoint
parts of our basis operators, respectively. Depending on the chosen pair, the former can be shown to provide
Oðh6Þ or Oðh4Þ approximation to of =ox while the latter is the positive self-adjoint operator which action on ½f �j
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can be estimated as Oðh5Þ. Due to positivity of ci, the second term of the above sum is the positive operator as
well (in the frozen coefficients case). It represents a dissipative mechanism which may be viewed as a built-in
filter of non-physical oscillations of numerical solutions. The flux splitting in Eq. (15) is similar to the Lax–
Friedrichs one, the difference being due to the absence of the direct relation to the Jacobian matrix of=ou.

Assuming fðuÞ ¼ Au where A is a constant symmetric matrix, it is easy to see that (15) is conditionally stable
in the L2-norm generated by the introduced inner product. It is worth noting that the theoretical stability for
the frozen coefficients is guaranteed by the positivity of C and any relation between its entries and the eigen-
values of the corresponding Jacobian matrix is not required. However, practically, it is desirable to use ci

which are of the same orders of magnitude as the eigenvalues are. Otherwise, excessively small or large dissi-
pation may lead to either spurious oscillations of numerical solutions or some loss of accuracy due to large
coefficients in the Oðh5Þ terms.

Specifying time stepping procedures, one can construct various conditionally or unconditionally stable fully
discretized schemes. In particular, the Runge–Kutta technique is appropriate for unsteady problems while the
following two-level scheme can be used to get steady-state solutions:
ðI þ sL1Þ
umþ1 � um

s
þLum ¼ 0; tm ¼ ms; m ¼ 0; 1; 2; . . . ð16Þ
where L1 is a preconditioner admitting relatively simple inversion of the time stepping operator and preserving
stability of the scheme. One of the possible options is to choose L1 as a first-order approximation to the
x-derivative.

Considering (14) as the scalar equation (p = 1) with f ðuÞ ¼ au; a ¼ const, one can estimate in the standard
way dispersion and dissipation properties of the semi-discretized scheme with L operator. To perform the
analysis, we use, for example, the space U h of bounded grid functions. Now operator L : U h ! Uh has the
eigenfunctions wn ¼ expðianÞ; 0 6 a 6 2p; n ¼ 0;�1;�2; . . . ;wn 2 U h. Assuming wn to be the initial value
for Eq. (14), the solution of (15) can be readily obtained to give
unðtÞ ¼ e�c1adðaÞt=heiðan�auðaÞt=hÞ ¼ e�c1adðaÞt=heikðxn�auðaÞt=aÞ; ð17Þ

where c1 is the flux splitting constant, dða; sÞ=h and uða; sÞ=h are the real and imaginary parts of the eigen-
values while k ¼ a=h is the wave number and xn ¼ nh. The term auða; sÞ=a ¼ arða; sÞ may be viewed as the
numerical phase velocity and the deviation of rðaÞ from unity defines the phase errors introduced by the
scheme. Since the parameter s is supposed to be chosen in such away that adða; sÞ > 0, the positive function
c1jdj characterizes the attenuation of the initial harmonics during time interval t ¼ h=jaj and may be consid-
ered as a measure of the amplitude errors. The phase and amplitude errors can be shown to be Oða6Þ for L5

operators. In the case of the fourth-order operators, they are Oða4Þ and Oða6Þ, respectively.
One can easily extend schemes (15) and (16) to the case of the Euler equations written as conservation

laws in curvilinear coordinates. In that case, it is sufficient to construct L operators corresponding to each
spatial coordinate. As to the Navier–Stokes equations, the terms with viscosity coefficients can be approx-
imated quite independently with desired order. In particular, centered compact approximations can be
used.

3. Multioperators

The above defined operators families depending on the parameter s can be used for constructing higher-
order approximations to first derivatives or convection terms. They differs from those previously investigated
in [1,3–5,8].

3.1. Multioperators based on L5ðsÞ family

The potential for constructing prescribed-order multioperators using basis operators L5ðs1Þ; L5ðs2Þ; . . . ;
L5ðsMÞ where s1; s2; . . . ; sM is a set of distinct values of s is due to the specific form of the Taylor expansion
series like (1) for L5ðsÞ. Performing manipulations with the series for D0 and D2, one can arrive at the following
expression for the action of LðsiÞ on a sufficiently smooth function u
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L5ðsiÞ½u�j ¼ ½ou=ox�j þ
Xl

k¼5

pk�4ðsiÞ okþ1u=oxkþ1
	 


j
hk þOðhlþ1Þ;

pk�4ðsiÞ ¼ aksi þ
Xk�4

l¼1

bkls�l
i ; i ¼ 1; 2; . . . ;M

ð18Þ
where ak and bkl are numerical constants. To prove the second equality in (18), one can use the series manip-
ulation rules and the induction procedure. As an illustration, functions p1; p2 and p3 look as
p1ðsÞ ¼
1

135s
� s

120
; p2ðsÞ ¼

41

12600
� 1

405s2
; p3ðsÞ ¼

160s�3 � 291s�1 þ 54s
194400

:

Fixing M values s1; s2; . . . ; sm and introducing a partition of unity
PM

i¼1ci ¼ 1, the system annihilating OðhkÞ
terms, k ¼ 5; 6; . . . M þ 4, in (18) reads
XM

i¼1

ci ¼ 1;
XM

i¼1

cip1ðsiÞ ¼ 0;
XM

i¼1

cip2ðsiÞ ¼ 0; . . .
XM

i¼1

cipM�1ðsiÞ ¼ 0: ð19Þ
In the above cited publications, the matrices of the systems like (19) were reduced to transposes of the Van-
dermonde matrix whose entries are powers of si or s�1

i . Thus, the existence and uniqueness of the solutions
were guaranteed. However, it is not the case of Eq. (19). It can be shown that there exist hyperplanes in
the (s1; s2; . . . ; sM ) spaces containing ‘‘wrong’’ values of the parameters.

For example, in the case of M = 3, relatively simple algebraic manipulations show that ‘‘good’’ parameters
s1; s2; s3 may not satisfy the relation
s1s2 þ s1s3 þ s2s3 þ 8=9 ¼ 0: ð20Þ

Practically, the solvability of (19) can be readily checked by solving it numerically for fixed values of the

parameters. Moreover, the search for the solvability domains in the parameters spaces is greatly simplified
if one specifies a distribution of the parameter s inside some chosen interval [smin, smax]. In that case, the deter-
minant of system (19) is a function of two variables and can be readily investigated while smin, smax can be used
as parameters controlling the multioperators properties.

Suppose now that the existence and uniqueness of the solution of (19) is verified for a particular value of M

and a particular parameter distribution for a chosen admissible pair [smin, smax]. Then one has
LM ½u�j ¼
XM

i¼1

ciL5ðsiÞ½u�j ¼
ou
ox

� �
j

þOðhMþ4Þ: ð21Þ
Formally, one can assign any integer value to M to obtain arbitrary-order approximation to first deriva-
tives. Moreover, changing M does not influence execution times for calculating LM uj; j ¼ 0; 1; 2; . . . J if parallel
machines are used and the corresponding broadcasting and gathering expenses are not taken into account. It
can be explained in the following manner.

Suppose that one can use M processors. Choosing any set of M distinct values of s, the task for the ith
processor is to calculate the action L5ðsiÞuj with assumed boundary conditions for L5 calculations. Performing
in the parallel manner, the processors provide outputs which are summed with c coefficients to give
LM uj; j ¼ 0; 1; 2; . . . J . Note that increasing M adds no complexity to the execution procedure for each proces-
sor. The parallel algorithm is schematically presented in Fig. 1 where the set uj; j ¼ 0; 1; 2; . . . J is denoted by u

(see Fig. 2).
It can be shown that the multioperator LM defined by (21) satisfies the equality which is similar to (6)
Lð1ÞM ðs1; s2; . . . ; sMÞ ¼ Lð1ÞM ð�s1;�s2; . . . ;�sMÞ;
Lð0ÞM ðs1; s2; . . . ; sMÞ ¼ �Lð0ÞM ð�s1;�s2; . . . ;�sMÞ:

ð22Þ
The proof is based on the fact that the polynomials in (19) are either odd or even functions of s in accordance
with the dependencies on s of the skew-symmetric and self-adjoint components of the L5ðsÞ. Due to the zero
right-hand sides of all equations in (19) except of the first one corresponding to the partition of unity, the sys-



Fig. 1. Parallel algorithm.

Fig. 2. Determinant of the system for the multioperator coefficients, M = 5 (ninth-order multioperator).
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tem and therefore its solution is invariant under the change s! �s. Taking into account Eq. (6), the above
operators equalities can be easily established.

Now we are interested in pairs smin, smax defining multioperators with positive (negative) self-adjoint com-
ponents Lð0ÞM ðs1; s2; . . . ; sMÞ. The bounds of positivity in the plane (smin, smax) can be obtained numerically by
solving the following problem.

Find smin, smax so that Lð0ÞM ðsmin; smaxÞ > 0 or Lð0ÞM ðsmin; smaxÞ < 0.
The problem can be solved by calculating the real part of the Fourier transform bLMðaÞ; a ¼ kh, of LM at

each grid point of a grid in the (smin, smax) plane and checking if they are positive or negative for a 2 ½0; p�.
Supposing that the solution exists, any resulting ‘‘good’’ pair smin, smax can serve as the multioperators param-
eters providing positive or negative approximations. In the latter case it is sufficient to use �smin;�smax to guar-
antee multioperators positivity.

As in the case of the basis operators, multioperators actions on grid functions can be presented as a differ-
ence of numerical fluxes at the neighbor midpoints. It can be accomplished by multiplying both sides of the
Eq. (4) written for s ¼ si by ci and performing the summation over i. As a result, one arrives at
LMðsÞfj ¼ ððqMÞjþ1=2 � ðqMÞj�1=2Þ=h; ðqMÞjþ1=2 ¼ GM uj;

GM ¼
XM

i¼1

ciGðsiÞ;
ð23Þ
where GðsÞ is defined in (5). Again, one has the reconstruction procedure which can be applied to the finite
volume formulation as well. In that case, one has the equality written for midpoint values in terms of the cell
averaged values �uj:
Mþ4
fjþ1=2 ¼ GM �uj ¼ f ðxjþ1=2Þ þOðh Þ:
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3.2. Multioperators with L4;l; L4;r basis operators

The Taylor expansion series for L4;l; L4;r operators, Eqs. (11) and (12), show that the coefficients for hk,
k ¼ 4; 5, are ðk � 3Þth-order polynomials in s. Using the induction procedure, it is possible to show that it
is true also for k > 5. It means that upon fixing M distinct values of s and introducing a partition of unityPm

i¼1ci ¼ 1, the sums
Pm

i¼1sici;
Pm

i¼1s2
i ci; . . . ;

Pm
i¼1sM�1

i ci can be obtained successively by equating to zero the
coefficients. As a result, one arrives at the following system
Sg ¼ r; ð24Þ

where
S ¼

1 1 . . . 1

s1 s2 . . . sM

s2
1 s2

2 . . . s2
M

..

. ..
. . .

. ..
.

sM�1
1 sM�1

2 . . . sM�1
M

�������������

�������������

g ¼ ðc1; c2; . . . cMÞ

T , r ¼ ð1; r2; . . . rMÞT , rk; k ¼ 2; 3; . . . M being numerical constants. The system holds for both
operators L4;l; L4;r with the same RHS since the corresponding Taylor expansion series differ only in signs of
the odd powers to h. The system is known to be always solvable, the solution being readily obtainable in an
analytic form. This proves the existence and uniqueness of the left and right multioperators defined by
LM ;l ¼
XM

i¼1

ciL4;lðsiÞ; LM ;r ¼
XM

i¼1

ciL4;rðsiÞ; ð25Þ
where ci are the solution of (24). They approximate first derivatives with OðhMþ3Þ truncation errors.
Unfortunately, the condition numbers of systems like (24) dramatically increase with growing M. It

adversely effects the accompanied round-off errors. To considerably improve the situation, the distributions
of the parameters si should be defined as zeroes of the Chebyshev polynomials for chosen intervals (smin, smax).
The zeroes read as
si ¼
smin þ smax

2
þ smax � smin

2
cos
ð2i� 1Þp

2M
; i ¼ 1; 2; . . . ;M
Practically, using the above parameters distribution allows to construct near 10th-order approximations with
quite acceptable round-off errors supported by 64 bits arithmetics. The approximation order can be consider-
ably increased by increasing machine accuracies.

The conjugate properties of LM ;l and LM ;r defined by Eq. (25) follow immediately from those of the basis
operators, Eq. (13):
Lð1ÞM ;lðsmin; smaxÞ ¼ Lð1ÞM ;rðsmin; smaxÞ; Lð0ÞM ;lðsmin; smaxÞ ¼ �Lð0ÞM ;rðsmin; smaxÞ:
Thus, the ‘‘switching’’ of the self-adjoint components results from changing of the operator indexes rather
than from changing the parameters signs. As in the case of the LM operators, we consider as ‘‘good’’ values
(smin, smax) those which provide positivity of either of two operators LM ;l; LM ;r. Now the task is to find (smin,
smax) so that the real part of the operators Fourier transforms are either positive or negative. It can be readily
accomplished in the same manner as in the case of LM operator.
3.3. Multioperators-based schemes

Though the multioperators approach can result in formally arbitrary-order approximation to various grid
functionals and, in particular, to derivatives at nodal points, their use as a discretization tool for convection
terms requires special investigations. It concerns first of all with the search for positivity regions in the (smin,
smax)-plane for chosen parameters distributions. Of course, the positivity requirement can be relaxed in the
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case of stabilized time stepping devices (for example, implicit ones), but its fulfilment important if one follows
the strategy of constructing robust schemes. Once the required parameters domains are specified, the next step
is a fine tuning of the parameters aimed at some desirable optimization.

To be definite, suppose that LMðsmin; smaxÞ > 0 or LM ;lðsmin; smaxÞ > 0. Denoting the operators by L+, we
define then L� as LMð�smin;�smaxÞ or LM ;rðsmin; smaxÞ. With the notations, the semi-discretized scheme (15)
and its extensions to the described in Section 2.3 fully-discretized forms may serve as examples of conservative
linearly stable multioperators-based schemes. They can be rewritten in terms of numerical fluxes needed if flux
limiters are used in shock capturing calculations. Optionally, one can set the flux splitting matrix C equal to
zero to obtain dissipation-free non-robust schemes.

In the case of diffusion terms, the centered desired-order multioperators approximations described in [8] or
other high-order approximations can be used.

3.3.1. Dispersion and dissipation

Returning to the solution (17) of the advection equation with a constant coefficient a > 0 for the x-derivative,
the numerical phase velocity resulting from the multioperators approximations is a� ¼ auðaÞ=a;uðaÞ ¼
hImL̂þðaÞ; a ¼ kh. The deviation of the relative phase velocity from the unity ep ¼ ja�=a� 1jmay be considered
as a measure of the phase errors. Similarly, ea ¼ dðaÞ ¼ hRebLþ may be viewed as a dissipation parameter
characterizing the amplitude errors.

In the long wave limit, the phase velocity and amplitude errors can be estimated as OðaKþ1Þ where the
approximation order K is supposed to be odd. Thus, very accurate harmonics representation can be expected
for some interval 0 6 a 6 a�. As in the case of the basis operators, the growth of the phase errors beyond this
interval is accompanied by increasing dissipation which plays role of a built-in filter of spurious oscillations.
As to the actual values of a*, high approximation orders of multioperators do not necessary mean that a* is
considerably greater than those in the case of the corresponding basis operators. To increase the values in the
case of traditional high-order finite difference schemes, some optimization procedures were suggested (see, for
example, [14,15,17]). Optimization can be used in the present case as well by considering smin and smax as con-
trolling parameters. Several strategies depending on problems to be solved can be thought of. For example,
target functionals for selected wave numbers intervals can be constructed to minimize phase errors ep, to min-
imize amplitude errors ea or to minimize simultaneously both phase and amplitude errors ep and ea. The num-
ber of controlling parameters can be increased when using the following options.

(i) If one uses the flux splitting in Eq. (4), the dissipation can be controlled by the diagonal entries of the
matrix C (or by the constant c1 in the scalar case). In particular, one can obtain dissipation-free schemes
by setting the constants to zeroes.

(ii) Calculations of multioperators actions can be organized in the following way. Instead of calculating the
L+ and L� actions on positive and negative fluxes respectively, one can calculate the action of Lþ þ L�

on fj and the action of Lþ � L� on uj using different pairs (smin, smax). In the former case one can use the
pair which is the best choice in the dispersion preserving sense while in the latter case another pair can be
chosen to provide near zero dissipation errors for the obtained interval of near zero dispersion errors.

(iii) Additional free parameters can be introduced by increasing the number of the parameters si without
increasing approximation orders.

Various optimization procedures are beyond the scope of the present paper. In the following subsection, we
shall restrict ourselves to examples of the dispersion and dissipation functions obtained by calculating the
Fourier transforms of the operators for several values of parameters pairs and choosing visually the ‘‘best
looking’’ functions in a.

3.3.2. Comments on boundary conditions

Boundary conditions for calculations of the multioperators actions are essentially those needed in the case of
the corresponding basis operators. Thus, in contrast to conventional approximations, no extra numerical bound-
ary conditions are required when increasing approximation orders. However, there is the following latent diffi-
culty emerging if one tries to get approximation orders at boundaries conforming with those of multioperators.
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When killing the low-order terms in the expansion (1) for LhðsÞ, it was implicitly assumed that the latter holds
everywhere in a computational domain. Generally, boundary operators in non-periodic cases of bounded
domains has expansions different from (1) thus producing mismatch near the boundaries. Consequently, multi-
plying by ci with summing over i does not annihilate higher-order terms near boundaries. The exception is peri-
odic problems when no special boundary operators are needed. One way out is to construct boundary operators
for each si which preserve the main expansion at internal points at least with certain degree of accuracy. It can be
accomplished by using other multioperators which extrapolate with a prescribed order actions of basis operators
at near-boundary grid points. Such multioperators are planned to be presented in Part II of the present paper.
The technique can be used for conventional compact schemes as well.

The possibility of non-conforming boundary and interior schemes is also worth discussing. It should be
noted that matrices to be inverted may, on occasion, posses noticeable diagonal dominance. It means that
the influence of boundary values decays rapidly with increasing distances from boundaries. Therefore, local
higher-order and higher accuracy can be obtained almost everywhere in computational domains, the exception
being only boundary and near boundary nodes where orders and accuracy are expected to be those of the basis
operators. Having in mind that the basis operators can be quite accurate, the idea of using their ‘‘native’’
boundary conditions may be viewed as quite acceptable from the practical viewpoint at least in some
instances.

3.4. Schemes with seventh- and ninth-order multioperators

As a particular realizations of the above presented theory, consider the schemes based on the seventh- and
ninth-order LM operators (M ¼ 3; 5).

In the simplest case of M = 3 one has L5ðs1Þ; L5ðs2Þ; L5ðs3Þ basis operators. Assuming an uniform distribu-
tion (s1; ðs1 þ s3Þ=2; s3), it is easy to see that the LHS of (20) reduces to ððs1 þ s3Þ2 þ 2s1s3Þ=2þ 8=9 which is
positive if s1s3 > 0. Under this condition, equality (20) is never satisfied and seventh-order multioperators
do exist. Fixing, for example, positive values of s1 and s3, s1 < s3, one can solve the linear system of three equa-
tions to obtain coefficients c1; c2; c3 giving the seventh-order multioperator depending on two parameters. We
denote it by L57,
L57ðs1; s3Þ ¼
X3

k¼1

ckL5ðskÞ;
thus specifying the orders of basis operators and the resulting multioperator. To estimate the domains in the
ðs1; s3Þ-plane where L57ðs1; s3Þ > 0, the Fourier transform
bL57ða; s1; s3Þ ¼
X3

k¼1

ck
bL5ða; skÞ
was calculated. It was found that its real part d7ða; s1; s3Þ ¼ hRebL57ða; s1; s3Þ is a negative function in
a; 0 6 a 6 p, at least if ðs1; s5Þ 2 X7 where X7 is defined by
X7 ¼ f:8 6 smin < smax; 2 6 smax 6 20g ð26Þ
with smin ¼ s1 and smax ¼ s3. Hence, the operator can be viewed as a positive one for the pairs ð�s1;�s3Þ sat-
isfying ðs1; s3Þ 2 X7.

Consider now the case M = 5, that is, ninth-order multioperator. Fixing, for example, an uniformly distrib-
uted five parameters s1 < s2 < � � � < s5, one obtains the linear system which solution (if exists) gives five values
of the coefficients depending on two parameters, say, s1 and s5. The resulting multioperator is defined by
L59ðs1; s5Þ ¼
X5

k¼1

ckL5ðskÞ:
Unfortunately, analytical estimates of the parameters domains guaranteeing multioperators existence become
too complicated in this case. However, the existence can be readily checked (at least locally) by calculating the
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determinant of the system Dðs1; s5Þ as a function of two variables. The calculations for 1 6 s1; s5 6 15 give the
surface Dðs1; s5Þ shown in Fig. 1. As seen, it has no common points with the plane Dðs1; s5Þ ¼ 0.

The search for a positivity domain in ðs1; s5Þ-plane can be carried out in the above described manner. In the
case of the uniform parameters distribution, the calculations show that d9ða; s1; s5Þ, the real part of the Fourier
transform hbL59ðs1; s5Þ, is negative if ðs1; s5Þ 2 X9 where X9 can be defined approximately by (26) with smax ¼ s5.

Once the positivity domains are found, the smin and smax values can be used to control the dispersion and
dissipation properties in the case of advection equations with constant coefficients. Avoiding introducing func-
tionals to be minimized, we use this opportunity by varying the parameters and observing the phase velocity
and dissipation functions rðaÞ and dðaÞ. The procedure was aimed at producing an example rather than
obtaining the best possible results.

In the present case, the dispersion relation preserving property may be characterized by the relative numer-
ical phase velocity given by rkðaÞ ¼ hImbL5kðaÞ=a; k ¼ 7; 9. Unexpectedly, it was found that ‘‘good’’ values of s1

for fixed smax ¼ s3; s5 from the interval 5 6 smax 6 15 in the seventh- or ninth-order case, respectively, are close
to 0.8 for both multioperators. The functions rðaÞ ¼ rmðaÞ;m ¼ 7; 9; a ¼ kh are shown in Fig. 3 for
s1 ¼ :82; sð3Þ ¼ 10 and s1 ¼ :835; sð5Þ ¼ 15 in the case of the seventh-order and ninth-order multioperators,
respectively. Though the curves for M = 3 and M = 5 look almost identical, the numerical values of the phase
errors were found to be considerably smaller in the latter case for the long and medium waves, the estimates
being Oða8Þ and Oða10Þ for M = 3 and M = 5, respectively. Accordingly, the calculations give, for example,
j1� r7ðp=4Þj ¼ 2:1� 10�6; j1� r9ðp=4Þj ¼ 1:2� 10�7.

The dispersion errors j1� rðaÞj are shown in Fig. 4 for M = 3 and M = 5. As seen, the phase errors intro-
duced by the ninth-order multioperator are very small in the interval 0 6 kh 6 p=2, their maximum value
being 1:66� 10�5 at kh ¼ p=2. The upper limit of kh for which the errors are less than 5 · 10�5 is about 1.9.

It is worth comparing the above errors with those for existing optimized schemes, for example, for the
schemes from [17]. Following the definition of resolving efficiency first introduced in [16] and using notations
from [17], we rewrite the dispersion errors as Ek ¼ jk�Dx� kDxj=p;Dx ¼ h where k* is the effective wave num-
ber. In our notations, Ek ¼ j1� rj � kh=p. The criteria introduced in [17] are Ek < 5� 10�4 and Ek < 5� 10�5.
Fig. 3. Relative phase velocity and dissipation parameter vs. dimensionless wave number. Solid and dashed lines correspond to ninth- and
seventh-order multioperators.

Fig. 4. Dispersion errors vs. dimensionless wave number. Solid and dashed lines correspond to ninth- and seventh-order multioperators.
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They were viewed as indications of maximum wave numbers properly and accurately resolved by schemes and
were expressed in terms of numbers of points per wave length, kp=Dx and ka=Dx respectively. In the ninth-
order case, the values are 2.9 and 3.25 as compared with 3.36 and 4.66, the data corresponding to the best
results from [17].

The dissipation functions dðaÞ ¼ dmðaÞ;m ¼ 7; 9 shown in Fig. 3 are also found to be practically indepen-
dent of the maximal parameters values smax. Though they are visually closely aligned, the small dissipation
wave number upper limit is slightly larger in the M = 5 case (see Fig. 3). Moreover, the values of d9ðaÞ are
considerably smaller than those of d7ðaÞ for kh < p=2. For example, jd7ðp=4Þj ¼ 1:7� 10�5; jd9ðp=4Þj ¼
4:1� 10�7, respectively.

Comparing the low dispersion and low dissipation wave number domains, it should be noted that (as seen
in Fig. 3) the latter is slightly narrower than the former for the present parameters choices. However, as was
mentioned previously, it is possible to optimize both errors individually by choosing different parameters
pairs.

Outlining briefly the seventh- or ninth-order multioperators Eq. (25) based on the operators L4;l and L4;r,
Eqs. (11) and (12), the following specific issues should be emphasized.

(i) The multioperators existence is guaranteed for distinct values of the parameters. Their best choice is the
Chebyshev distributions for chosen pairs (smin, smax).

(ii) Since the operators are the fourth-order ones, one should set M = 4 and M = 6 to get the multioperators
with Oðh7Þ and Oðh9Þ dissipative leading terms in their Taylor expansion series.

(iii) Once the positivity domains are found for each multioperator, their negative counterparts can be
obtained using the ‘‘opposite’’ basis operators (that is, the operators with the index r instead of l or vice
versa) rather than changing the signs of the parameters, the c coefficients being unchanged. Considering,
for example, the ninth-order left multioperator:
L49;lðsmin; smaxÞ ¼
X6

k¼1

ckL4;lðskÞ;
it was found to be positive at least if the ðsmin; smaxÞ pair belongs to the region marked by ‘‘+’’ in Fig. 5.
It was found also that the optimization procedures turn out to be more efficient if different pairs from the

domain are used for the dispersion and dissipation tunings. As an illustration of the individual approximate tun-
ing, Fig. 6 displays the phase and amplitude curves obtained for the pairs (�0.1793,�0.3) and (�0.189,�0.3),
respectively. As seen, this time the small dissipation region is wider than the dispersion preserving one.

The scheme with the multioperators pair ðL49;l; L49;rÞ used in the calculations presented below is referred to
as the scheme with the L49 multioperator.

3.5. Numerical examples

3.5.1. Inviscid Burgers’ equation

Consider first the periodic IVP problem for the Burgers equation which is often used as a testing one (see,
for example [18,15])
Fig. 5. Domain of positivity for the LM ;l ninth-order multioperator (marked by ‘‘+’’).



Fig. 6. Relative phase velocity and dissipation parameter vs. dimensionless wave number in the case of LM ;l ninth-order multioperator.
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ou
ot
þ o

ox
u2

2
¼ 0; �1 6 x 6 1;

uð0; xÞ ¼ 1þ 0:5 sinðpxÞ; �1 6 x 6 1:

ð27Þ
The exact solution up to t ¼ 2=p is smooth. It can be obtained using an iterative procedure described in [15]
with the machine precision. Its values at grid points will be denoted by uref

j .
The calculations with the splitting constant c1 ¼ 1 were carried out using the fourth-order Runge–Kutta

method. To exclude the influence of the relatively low order of the time stepping technique, sufficiently small
values of the CFL number were used. The accuracy was estimated using the discrete C-norm giving numerical
solution errors and approximate mesh convergence orders as
EcðnÞ ¼ max
j
juj � uref

j j; kc ¼ log2

EcðnÞ
Ecð2nÞ :
In Table 1, the results for L57, L49 and L59 multioperators corresponding to time t ¼ 0:3 are presented for
several meshes with the number of nodes n. For comparison, the data from [10] obtained with the previous
versions of ninth-order multioperators (denoted here by L59a and L39) are included in the table. The multiop-
erators are based on another fifth-order operator from [2,7] (denoted here by L5a) and one of the third-order
CUD basis operators from [2]. The table contains also the results of calculations with the fifth-order WENO
scheme presented in [10]. As seen, the schemes with L57 and L59 outperform all other schemes demonstrating
remarkably high accuracy (especially, in the latter case). Note that the claimed convergence orders of the
1
rgers’ equation: the discrete C-norms of the solution errors and the convergence orders obtained by different methods

8 16 32 64 128 256

-5 Ec 6.47e � 2 1.25e � 2 1.20e � 3 9.50e � 5 3.31e � 6 8.66e � 8
kc 2.4 3.4 3.7 4.8 5.3

Ec 3.99e � 2 6.10e � 3 4.35e � 4 1.63e � 5 5.11e � 7 1.56e � 8
kc 2.71 3.81 4.74 5.00 5.03

Ec 4.96e � 2 7.86e � 3 3.85e � 4 9.01e � 6 7.76e � 8 3.58e � 10
kc 2.66 4.35 5.42 6.86 7.76

Ec 1.95e � 2 2.11e � 3 1.22e � 4 1.07e � 6 5.85e � 9 3.79e � 11
kc 3.24 4.07 6.83 7.51 7.27

Ec 3.30e � 2 2.89e � 3 1.30e � 4 2.17e � 6 1.30e � 8 3.46e � 11
kc 3.51 4.47 5.91 7.38 8.55

Ec 1.82e � 2 2.14e � 3 3.61e � 5 2.21e � 7 8.03e � 10 3.38e � 12
kc 3.1 5.9 7.3 8.1 7.9

Ec 1.74e � 2 1.86e � 3 2.16e � 5 5.02e � 8 4.7e � 11 9.96e � 14
kc 3.2 6.4 8.7 10 9.2
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schemes settle earlier when doubling the number of nodes as compared with those for other ninth-order mul-
tioperators. The last were found to provide the ninth-order mesh-convergence only in the case of more refined
meshes than those presented in the table.

Comparing the schemes with L49 and L59a, the present calculations show their approximately similar per-
formances. However, slight preference may be given to the former due to its relative simplicity. The L39 oper-
ator is seen to be less accurate than other ninth-order operators. It can be explained by the fact than the
condition number of the corresponding Vandermonde matrix for M = 7 can be greater than that for
M = 5 resulting in larger absolute values of the ci coefficients. In turn, it leads to relatively large numerical
constants in the truncation errors. At the same time, the operation counts when calculating the operators
actions in the case of the fifth-order CUD basis operators are nearly twice as large as those for the third-order
CUD ones.

Though Table 1 gives a general idea of the multioperators performances, it is worth noting that the pre-
sented results concern particular choices of the involved parameters which are not necessarily optimal for each
scheme. Thus, the possibility exists of further decreasing the corresponding solution errors. In turn, it may
influence the estimates of the relative efficiency of the schemes.

3.5.2. Discontinuous solutions

Exploiting exact solutions smoothness, the present paper does not concern with shock capturing calcula-
tions. It should be emphasized however that once multioperators numerical fluxes are calculated, it is possible
to correct them to suppress spurious oscillations well localized near discontinuities. To do so, one can look for
a flux limiter best suited to the present case. To illustrate the capability of the multioperators schemes to deal
with discontinuous solutions, the calculations for Eq. (27) were carried out up to t ¼ 1:1. For that time
moment, the exact solution of Eq. (27) is no longer smooth. As an example of possible limiters, one of the
earliest devices [20] was used. In Fig. 7, the corrected numerical solution uðxj; tÞ; xj ¼ �1þ jh; j ¼ 0;
1; . . . n; n ¼ 320; t ¼ 1:1 (shown by markers) is compared with the exact one (shown by the solid line).
Although some loss of accuracy can be detected near the discontinuity, the numerical and the exact solutions
are visually undiscernible. It should be noted that the numerical solutions obtained without correcting numer-
ical fluxes (not presented here) show only marginal non-monotone behavior.

3.5.3. 3D inviscid Burgers’ equation

We consider now the example presented in [19]. The IVP periodic problem reads
Fig. 7.
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uð0; xÞ ¼ 0:25þ sinðpxÞ sinðpyÞ sinðpzÞ; �1 6 x 6 1;�1 6 y 6 1;�1 6 z 6 1:

ð28Þ
Its exact solution can be readily obtained using an iteration procedure for solving algebraic equations [19]. The
calculations were carried out with the fourth-order Runge–Kutta time stepping and the ninth-order multiop-
erators based on L5ðsÞ operators corresponding to the x; y; z coordinates, the parameters distribution being the
Comparison of numerical and exact solutions of the Burgers’ equation at t ¼ 1:1 (shown by markers and solid line, respectively).



Table 2
3D Burgers’ equation: the l1-norms of the solution errors and the convergence orders obtained by the present ninth-order scheme

n 5 10 20 40 80

L59 l1 5.89e � 3 1.94e � 4 1.57e � 7 1.48e � 10 9.10e � 14
kc 4.92 10.27 10.51 10.66

Fig. 8. Exact and numerical solutions of the linear advection equation at grid points shown by solid line and markers, respectively
(t = 800).
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same. The l1 norm of the numerical solutions errors and mesh convergence orders are shown in Table 2.
Again, extremely high accuracy of the technique can be deduced from the Table. For example, the error
for n = 80 is about five orders of magnitude less than that in the case of the fifth-order ADER5 scheme from
[19].

3.5.4. Acoustic benchmark problem

To illustrate resolution properties of schemes with L59 operators, consider the following initial value
problem
ou
ot
þ ou

ox
¼ 0; uð0; xÞ ¼ ½2þ cosðbxÞ�½expð�2 lnð2Þðx=10Þ2Þ�; b ¼ 1:7
to be discretized using the uniform mesh with h = 1. The comparison of the exact solutions and the obtained
numerical solution at times t = 400 and t = 800 is needed. The problem was proposed by C. Tam in [21].

In our notations, the dimensionless wave number a ¼ b ¼ 1:7 > p=2 approximately corresponds to the
domain of small phase and amplitude errors of the scheme for very short wave lengths.

Fig. 8 shows the comparison of the calculations at t = 800 with the solid line and markers presenting the
exact and numerical solutions respectively. Visually, no difference between the solutions is seen in the figure.

4. Conclusions

Further results in the framework of the multioperators arbitrary-order approximation are presented. Two
types of upwind (downwind) parameter-dependent operators of the fifth and the fourth-order are described.
They can serve as a basis operators by setting different values to the parameters. Linear combinations of the
basis operators (referred to as multioperators) allow to construct prescribed order approximations to convec-
tion terms. It is shown that the approximations can be cast in the form of numerical fluxes differences. It
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provides the potential for creating conservative schemes with possible flux corrections in the case of discon-
tinuous solutions.

The solvability of the linear systems for the combination coefficients is either guaranteed or can be verified
numerically. Since basis operators differ only in their parameters values, calculations of the multioperators
actions on known grid functions can be organized in a parallel manner. In that case, an increase of approx-
imation orders can be achieved simply by adding more parameters and more processors involved in the
calculations.

Following the strategy of constructing upwind schemes, the sets of the basis operators parameters should be
chosen to ensure the positivity (negativity) of the resulting multioperators in the standard Hilbert spaces of
grid functions. This can be accomplished by calculating the real parts of their Fourier transforms.

The paper concerns with spatial discretizations only. To construct fully discretized schemes, one can use
any reasonable time stepping procedure. It can be, for example, the Runge–Kutta technique for unsteady cal-
culations or a two-level preconditioned implicit scheme for getting steady-state solutions. In both case, a flux
splitting of the Lax-Friedrichs type with positive splitting constants instead of maximum absolute values of
flux function derivatives is suggested.

In the case of the advection equation with a constant coefficient, semi-discretized multioperators schemes
show very small amplitude and phase errors for physically relevant wave numbers supported by meshes. In the
highest wave numbers regions, the multioperators dissipative mechanism plays role of a built-in filter of spu-
rious oscillations. Using several options of choosing schemes parameters, it is possible to considerable enlarge
the dispersion relation preserving domains of the wave numbers.

As particular examples of the realization of the multioperators principle, semi-discretized schemes with the
seventh- and ninth-order multioperators are presented. Their dispersion and dissipation properties are out-
lined. It was shown that the upper limits of the dimensionless wave numbers for which the phase and ampli-
tude errors are very small (about 10�5) can be noticeably greater than p=2 for particular choices of the
parameters distributions. However, the same property for fully discretized schemes is critically dependent
on chosen time stepping techniques.

Generally, multioperators schemes are multipurpose ones. They can be used for solving various CFD prob-
lems allowing to construct sufficiently smooth meshes. However, their main areas of applications seem to be
DNS, LES, aeroacoustics and other problems requiring calculations for large time intervals. Possibly, higher-
than-fourth-order low dissipative and low dispersive Runge–Kutta methods are needed in many cases.
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Appendix A. Brief outlines of the previous multioperators results

The idea of increasing approximation orders of numerical formulas by using appropriate linear combina-
tions of operators from one- parameter operators families was first presented by the author at the Manchester
parallel CFD conference (1997) [1]. It resulted from close examination of the Taylor expansion series for the
earliest form of the compact upwind differencing (CUD) operators [2]. The series at grid point xj look as
1

h
I þ 1

6
D2 �

s
4
D0

� ��1

DðsÞ½f �j ¼
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ox

� �
þ s

24
h3f 4
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� 1
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h4f 5

j þ � � � ðA:1Þ
where D0 and D2 operators are those used in Eq. (3). It was observed that the Oðh3Þ and Oðh4Þ terms can be
killed by substituting in Eq. (A.1) distinct values of the parameter s ¼ s1; s2; s3 and summing the resulting
equations pre-multiplied by a partition of unity c1; c2; c3;

P3
i¼1ci ¼ 1. Equating the coefficients for h3 and h4

to zero and taking into account the partition of unity condition, the linear system for ci then reeds
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180
: ðA:2Þ
The system is always solvable for distinct values si since its matrix is of the Vandermonde type. Retaining more
terms in the above expansion series, one can verify that the successive powers of s, that is s3; s4; . . ., appear in
the expressions for the expansion coefficients. It is a particular manifestation of the general property of the
expansion series in the case of inverse operators depending on a parameter. More terms in the sums of the
pre-multiplied expansions (A.1) can be cancelled by fixing more values of s. Denoting the left-hand sides of
Eq. (A.1) by L3ðsiÞ½f �j; i ¼ 1; 2; . . . ;M , the linear combination LM ¼

PM
i¼1ciL3ðsiÞ was referred to as the ‘‘mul-

tioperator’’ generated by the basis operators L3ðsiÞ. It defines OðhMþ2Þ approximation to the first derivatives of
f ðxÞ at grid points.

In the subsequent studies, other CUD operators from [2] depending on the upwinding parameter s were
used as basis ones. The sole exception was the fifth-order operator of the present paper (it was erroneously
supposed that investigation into the corresponding multioperator will not provide additional useful
information).

For brevity, we denote below any CUD-based multioperator by LM. In all cases, it was found that matrices
of the systems for the coefficients ci are the Vandermonde matrices whose entries are powers either of si or of
s�1

i . It guarantees existence and uniqueness of the related multioperators for all sets of the parameter values.
Moreover, solutions of the systems can be obtained in analytical forms.

In the theoretical studies, the emphasis was on the properties of the skew-symmetric and self adjoint com-
ponents of LM’s viewed as operators in the standard Hilbert spaces of grid functions. The studies were con-
siderably simplified by writing them in terms of the D0 and D2 operators used in Eq. (A.1). Of interest were, in
particular, their response to the transformation si ! �si; i ¼ 1; 2; . . . ;M . It was found that LM’s change signs
of their self-adjoint components when changing signs of the underlying basis operators while the skew-sym-
metric components are invariant under the transformation. Denoting by bLMðkh; s1; s2; . . . ; sMÞ the multioper-
ators Fourier transforms, it means that
RebLMðkh; s1; s2; . . . ; sMÞ ¼ �RebLMðkh;�s1;�s2;� . . . ; sMÞ;
ImbLMðkh; s1; s2; . . . ; sMÞ ¼ ImbLMðkh;�s1;�s2;� . . . ; sMÞ:
The algebraically equivalent expressions can be written for the real and imaginary parts of the eigenvalues of
LM if the space of bounded grid functions with the discrete C-norm is assumed. Thus, the multioperators pre-
serve the similar property of the underlying basis operators. Having in mind multioperators-based schemes for
CFD applications, it was assumed that LM must satisfy other two conditions characterizing their basis oper-
ators. The conditions are as follows:

(i) There exists a domain in the parameters space for which multioperators are positive. In the terms of the
Fourier transforms, it means the existence of a set s1; s2; . . . ; sM such that RebLMðkh; s1; s2; . . . ; sMÞ > 0.

(ii) The dissipation may not vanish for the shortest waves theoretically supported by meshes, that is
RebLMðkh; s1; s2; . . . ; sMÞ 6¼ 0 in the vicinity of kh ¼ p.

The first condition means the possibility of constructing upwind schemes while the second one suggests the
existence of a built-in filter of spurious oscillations of numerical solutions.

It was found that the second condition rules out multioperators based on CUD operators with multiplica-
tive corrections in Eq. (3) and, in particular, multioperators resulting from the expansion series Eq. (A.1). In
fact, the values RebLMðp; s1; s2; . . . ; sMÞ were found in that case to be proportional to

P3
i¼1sici. The sum is equal

to zero since it is the left-hand side of the second equation in both (A.2) and the similar system in the case of
the fifth-order multiplicative correction operator in Eq. (3). Thus, only the remaining additive correction CUD
operators were used as basis ones. Their description can be found in [7].

To improve the conditioning of the linear systems for the c coefficients, the values of the parameter s were
always chosen as zeroes of the Chebyshev polynomials for some intervals [smin, smax]. Thus, the search for
parameters sets satisfying (i) was reduced to finding domains in the smin, smax plane providing positive values



2352 A.I. Tolstykh / Journal of Computational Physics 225 (2007) 2333–2353
of RebLMðkh; smin; smaxÞ; 0 6 kh 6 p. In some instances the simplest case M = 3, the estimates of the positivity
domains were obtained analytically.

The flux-splitting schemes outlined in Section 2.3 with the CUD-based multioperators were used for both
Euler and Navier–Stokes calculations. It was found that multioperators schemes can be advantageous over the
fifth-order CUD ones even though a single processor machine is used. It is due to the superior resolution prop-
erties of the higher-order methods allowing to use coarser meshes for good representation of fine solution
details.

Calculations of thin shear layers instability reported in [10] were carried out using partly a cluster parallel
system. They were characterized by a noticeable speed-up factor. However it was less than the’’ideal’’ one
(which is equal to the number of involved processors) due to data exchange operations.

More details concerning the CUD-based multioperators can be found in the papers mentioned in Section 1.

A.1. Multioperators with central compact differencing operators

Families of high-order compact approximations to various grid functionals (and, in particular, to deriva-
tives at grid points) were proposed by Lele in his well-known paper [16]. In the simplest case of the first or
second derivatives and three-point stencils, the differencing formulas in our notations look as
1
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They are known as Collatz and Numerov formulas, respectively (note that the Collatz operator can be ob-
tained by setting s = 0 in the operator in the left-hand side of Eq. (A.1)). Due to the lack of free parameters,
it is not possible to use them as basis operators. However, it is possible to obtain the necessary basis operators
by inserting a parameter in the inverse operators. The corrected formulas then define one-parameter families
of the second-order compact approximations. Denoting the parameter by c, the corresponding D1ðcÞ and
D2ðcÞ operators and the expansions for their actions read
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the coefficients for further terms being polynomials of successively increasing degrees.
Upon setting c ¼ c1; c2; c3, the systems for the c1; c2; c3 coefficients annihilating Oðh2Þ and Oðh4Þ terms in the

sums of the pre-multiplied series (A.3) are similar to system (A.2), the difference being only due to the nota-
tions for the parameters and other right-hand sides. The last are now ð1; 1=6; 1=30Þ and ð1; 1=12; 1=90Þ, respec-
tively, in the particular case of M = 3. The solutions written in either analytical or numerical form gives the
sixth-order approximations to the first and second derivatives.

Fixing M parameters c1; c2; . . . ; cM and retaining more terms in the expansions, 2Mth-order multioperatorsPM
i¼1ciD1ðciÞ can be constructed as compared with ðM þ m� 1Þth-order ones in the case of mth-order CUD

basis operators ðm ¼ 3; 5Þ. Thus, the central multioperators for the same M are superior over non-central ones
from the viewpoint of their orders and accuracy.

In the CFD context, schemes with central multioperators for the first derivatives can be efficient when sup-
plied with some artificial high-order dissipative mechanisms. Multioperators with D2ðcÞ basis operators can be
used for approximations to the second and cross derivatives in the viscous terms as well as for approximations
to the Poisson operator in the case of the vorticity-stream function formulation for incompressible flows.
More details and numerical examples showing highest accuracy of schemes withy central multioperators
can be found in [8].



A.I. Tolstykh / Journal of Computational Physics 225 (2007) 2333–2353 2353
A.2. Other types of multioperators

Though main emphasis in the multioperators investigations was placed on derivatives approximations,
other grid functionals can be of interest when constructing high-order methods for PDE’s or other applica-
tions. Examples are midpoint interpolations, integrals over cells, etc. To create multioperators for target func-
tionals, it is sufficient to modify the corresponding standard formulas by introducing inverse operators
depending on a parameter. The idea was used in [8] and in Section 2.2 of the present paper.

Recently, novel families of one-parameter compact approximations to various functionals were suggested
[11], the crucial point being the use of two-point inverse operators. They can generate basis operators for mul-
tioperators with some attractive properties. Relevant topics will be the subject matter of forthcoming papers.
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